SL Paper 1

a. Show that $2^n \equiv (-1)^n (ext{ mod } 3)$, where $n \in \mathbb{N}.$

and the sum of its binary digits in odd-numbered positions is divisible by 3.	
c. Express the hexadecimal (base 16) number ${ m ABBA_{16}}$ in binary.	[4]
Consider the recurrence relation $H_{n+1}=2H_n+1, \; n\in \mathbb{Z}^+$ where $H_1=1.$	
a. Find H_2 , H_3 and H_4 .	[2]
b. Conjecture a formula for H_n in terms of n , for $n\in\mathbb{Z}^+.$	[1]
c. Prove by mathematical induction that your formula is valid for all $n\in\mathbb{Z}^+.$	[5]
Consider the Diophantine equation $7x-5y=1,\ x,\ y\in\mathbb{Z}.$	
a. Find the general solution to this equation.	[3]
b. Hence find the solution with minimum positive value of xy .	[2]
c. Find the solution satisfying $xy = 2014$.	[3]
a. A number written in base 5 is 4303. Find this as a number written in base 10.	[2]
b. 1000 is a number written in base 10. Find this as a number written in base 7.	[5]

b. Hence show that an integer is divisible by 3 if and only if the difference between the sum of its binary (base 2) digits in even-numbered positions [3]

[3]

ABCDEFGHA0111000B0-111111C11-111111C11-111 </th <th></th>												
B0-111111C11-1100E111-110E1111-110E111001-1E1110001-B011111-11D1011111H0110001AWithout attempting to draw J, verify that J satisfies the handshaking lemma:a.ii.Without attempting to draw J, determine the number of faces in J.a.ii.Without attempting to draw J, determine the number of faces in J.b. The vertices D and G are joined by a single edge to form the graph K. Show that K is not planar.cal. Explain why a graph containing a cycle of length three cannot be bipartite.cal. Explain why a graph containing a cycle of length three cannot be bipartite.a. Use the Euclidean algorithm to find the greatest common divisor of 74 and 383.b. Hence find integers s and t such that 74s + 383t = 1.a. Given that $a = b(\mod p)$, show that $a^n = b^n(\mod p)$ for all $n \in \mathbb{Z}^+$.b. Show that $29^{13} + 13^{29}$ is exactly divisible by 7.a. Find the general solution to the Diophantine equation $3x + 5y = 7$.			Α			D						
$\frac{C}{D} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{0} \frac{1}{0} \frac{1}{1} \frac{1}{0} \frac{1}$												
$\boxed{\begin{array}{ c c c c c }\hline \hline b & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$			<u> </u>	L								
$\frac{F}{G} \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ - \ 1 \ 0 \ 0 \ 1 \ - \ 1 \ 0 \ 0 \ 0 \ 1 \ - \ 1 \ 0 \ 0 \ 0 \ 1 \ - \ 1 \ 0 \ 0 \ 0 \ 1 \ - \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ - \ 0 \ 0 \ 0 \ 1 \ - \ 0 \ 0 \ 0 \ 1 \ - \ 0 \ 0 \ 0 \ 1 \ - \ 0 \ 0 \ 0 \ 1 \ - \ 0 \ 0 \ 0 \ 0 \ 1 \ - \ 0 \ 0 \ 0 \ 0 \ 1 \ - \ 0 \ 0 \ 0 \ 0 \ 1 \ - \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ - \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ - \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$												
Image: Control of the general solution to the Diophantine equation $3x + 5y = 7$.			1		1		-	1	1			
Image: Image												
I. Without attempting to draw J , verify that J satisfies the handshaking lemma; ii.Without attempting to draw J , determine the number of faces in J . I. The vertices D and G are joined by a single edge to form the graph K . Show that K is not planar. i. Explain why a graph containing a cycle of length three cannot be bipartite. ii. Hence by finding a cycle of length three, show that the complement of K is not bipartite. ii. Use the Euclidean algorithm to find the greatest common divisor of 74 and 383. Hence find integers s and t such that $74s + 383t = 1$. Given that $a = b(\mod p)$, show that $a^n = b^n(\mod p)$ for all $n \in \mathbb{Z}^+$. Show that $29^{13} + 13^{29}$ is exactly divisible by 7. Find the general solution to the Diophantine equation $3x + 5y = 7$.					<u> </u>							
Hence find integers s and t such that $74s + 383t = 1$. Given that $a \equiv b \pmod{p}$, show that $a^n \equiv b^n \pmod{p}$ for all $n \in \mathbb{Z}^+$. Show that $29^{13} + 13^{29}$ is exactly divisible by 7. Find the general solution to the Diophantine equation $3x + 5y = 7$.	.ii.Without attempting to draw J , determine the provided of the structure of the second determine the second determines of the second determines and the second determines and the second determines and the second determines at the second determ	edge to edge to	ber of form	faces i the gr annot I	n $J.$ raph K ce bipa	. Shov	w that		·	nar.		
Show that $29^{13} + 13^{29}$ is exactly divisible by 7. Find the general solution to the Diophantine equation $3x + 5y = 7$.				n divise	or of 7	4 and	383.					
			nod <i>p</i>) for a	$ ext{ ll } n \in$	\mathbb{Z}^+ .						
						small	est po	sitive i	nteger	value	greater than 50.	

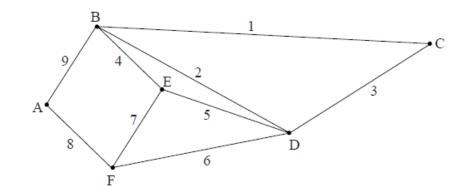
```
x\equiv a^{p-2}b(mod p).
```

b. Hence find the smallest value of x greater than 100 satisfying the linear congruence $3x \equiv 13 \pmod{19}$.

[4]

- a. Use the Euclidean algorithm to find $\gcd(162,\ 5982).$
- b. The relation R is defined on \mathbb{Z}^+ by nRm if and only if $\gcd(n,\ m)=2.$
 - (i) By finding counterexamples show that R is neither reflexive nor transitive.
 - (ii) Write down the set of solutions of nR6.
- a. Express the number 47502 as a product of its prime factors.
- b. The positive integers M, N are such that gcd(M, N) = 63 and lcm(M, N) = 47502. Given that M is even and M < N, find the two [5] possible pairs of values for M, N.
- a. Solve the recurrence relation $u_n = 4u_{n-1} 4u_{n-2}$ given that $u_0 = u_1 = 1$. [6]
- b. Consider v_n which satisfies the recurrence relation $2v_n = 7v_{n-1} 3v_{n-2}$ subject to the initial conditions $v_0 = v_1 = 1$. [9]
 - Prove by using strong induction that $v_n=rac{4}{5}{\left(rac{1}{2}
 ight)}^n+rac{1}{5}{(3)}^n$ for $n\in\mathbb{N}.$

Prove that 3k+2 and 5k+3 , $k\in\mathbb{Z}$ are relatively prime.


- a. Prove that the number 14641 is the fourth power of an integer in any base greater than 6. [3]
- b. For $a,b\in\mathbb{Z}$ the relation aRb is defined if and only if $rac{a}{b}=2^k$, $k\in\mathbb{Z}$.
 - (i) Prove that R is an equivalence relation.
 - (ii) List the equivalence classes of R on the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.
- a. Using mathematical induction or otherwise, prove that the number $(1020)_n$, that is the number 1020 written with base n, is divisible by 3 [8] for all values of n greater than 2.
- b. Explain briefly why the case n = 2 has to be excluded.

[8]

[7]

[2]

- a. Prove that if $\gcd(a,b) = 1$ and $\gcd(a,c) = 1$, then $\gcd(a,bc) = 1$.
- b. (i) A simple graph has e edges and v vertices, where v > 2. Prove that if all the vertices have degree at least k, then $2e \ge kv$. [6]
 - (ii) Hence prove that every planar graph has at least one vertex of degree less than 6.

The above diagram shows the weighted graph G.

a. Determine whether or not G is bipartite.	[2]
b. (i) Write down the adjacency matrix for G .	[4]
(ii) Find the number of distinct walks of length 4 beginning and ending at A.	

a. Use the Euclidean Algorithm to show that 275 and 378 are relatively prime.	[5]
b. Find the general solution to the diophantine equation $275x + 378y = 1$.	[7]

An integer N given in base r, can be expressed in base s in the form

 $N=a_0+a_1s+a_2s^2+a_3s^3+\ldots$ where $a_0,\ a_1,\ a_2,\ \ldots\in\{0,\ 1,\ 2,\ \ldots,\ s-1\}.$

â	a. In base 5 an integer is written 1031 . Express this integer in base 10 .	[2]
k	b. Given that $N=365,\ r=10$ and $s=7$ find the values of $a_0,\ a_1,\ a_2,\ \ldots$	[2]
C	c. (i) Given that $N=899,\;r=10$ and $s=12$ find the values of $a_0,\;a_1,\;a_2,\;\ldots$	[3]
	(ii) Hence write down the integer in base 12 , which is equivalent to 899 in base 10 .	
C	d. Show that 121 is always a square number in any base greater than 2.	[3]

[5]

a. (i) Use the Euclidean algorithm to find gcd(6750, 144).	[6]
(ii) Express your answer in the form $6750r + 144s$ where r , $s \in \mathbb{Z}$.	
b. Consider the base 15 number CBA, where A, B, C represent respectively the digits ten, eleven, twelve.	[6]
(i) Write this number in base 10.	
(ii) Hence express this number as a product of prime factors, writing the factors in base 4.	

[11]

[4]

[4]

[6]

b. (i) Sum the series
$$\sum_{r=0}^{\infty} x^r$$
.

(ii) Hence, using sigma notation, deduce a series for

(a)
$$\frac{1}{1+x^2}$$
;

(b) $\arctan x$;

(c)
$$\frac{\pi}{6}$$
.

c. Show that $\sum\limits_{n=1}^{100} n! \equiv 3 \pmod{15}$.

The positive integer N is represented by 4064 in base b and 2612 in base b + 1.

- a. Determine the value of b.
- b. Find the representation of ${\cal N}$
 - (i) in base 10;
 - (ii) in base 12.

Find the positive square root of the base 7 number (551662)7, giving your answer as a base 7 number.

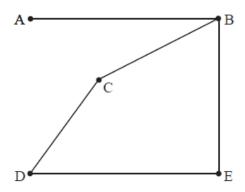
(a) Show that the solution to the linear congruence $ax \equiv b \pmod{p}$, where $a, x, b, p \in \mathbb{Z}^+$, p is prime and a, p are relatively prime, is given

by $x \equiv a^{p-2}b \pmod{p}$.

(b) Consider the congruences

 $7x \equiv 13 \pmod{19}$

 $2x \equiv 1 \pmod{7}$.


(i) Use the result in (a) to solve the first congruence, giving your answer in the form $x \equiv k \pmod{19}$ where $1 \leq k \leq 18$.

(ii) Find the set of integers which satisfy both congruences simultaneously.

Given that $n^2 + 2n + 3 \equiv N \pmod{8}$, where $n \in \mathbb{Z}^+$ and $0 \leq N \leq 7$, prove that N can take one of only three possible values.

A sequence $\{u_n\}$ satisfies the recurrence relation $u_{n+2} = 2u_{n+1} - 5u_n$, $n \in \mathbb{N}$. Obtain an expression for u_n in terms of n given that $u_0 = 0$ and $u_1 = 1$.

The figure below shows the graph G.

- a. (i) Write down the adjacency matrix for G.
 - (ii) Find the number of walks of length 4 beginning and ending at B.
- b. (i) Draw G', the complement of G.
 - (ii) Write down the degrees of all the vertices of G and all the vertices of G'.
 - (iii) Hence, or otherwise, determine whether or not G and G' are isomorphic.

A simple graph G is represented by the following adjacency table.

	A	В	С	D	E	F
A	-	1	-	-	1	1
В	1	-	1	-	1	-
С	-	1	-	1	-	-
D	-	-	1	-	1	1
E	1	1	-	1	-	_
F	1	-	-	1	-	-

[5]

[6]

a.	Draw the simple graph G .	[1]
b.	Explain why G does not contain an Eulerian circuit.	[1]
c.	Show that G has a Hamiltonian cycle.	[2]
d.	State whether or not G is planar, giving a reason for your answer.	[2]
e.	State whether or not the simple graph G is bipartite, giving a reason for your answer.	[2]
f.	Draw the complement G' of G .	[2]